用户名: 密码: 验证码: 验证码,看不清楚?请点击刷新验证码 注册
企业增值网 设为首页  
  管理    营销    品牌    案例  |  民营    团队    创业    趋势  |  女性    设备    安防    建材  |  房产    包装    项目    模具  |  教育    财经    资讯    新闻  |
  绩效    策略    人力    培训  |  专家    职场    企业    策略  |  文化    汽车    造纸    仪器  |  环保    印刷    物流    法律  |  云算    新华    军事    国际  |
首 页公司简介功能说明伯乐论坛午间课堂视频集锦大型展览加盟代理关于我们
 今天是: 您现在位于:首页 案例方法
趋势的预测:霍尔特指数平滑法

[作者:刘宝红    点击数:41    更新时间:2021年06月14日]

    霍尔特法得名于查尔斯·霍尔特,最早发表于1957年,成为预测上用得最广的模型之一[1]。对需求预测和库存计划来说,上世纪50、60年代可以说是人才辈出。这里我想特别介绍一下美国的HMMS研究团队。这个团队的名称来自四位研究者姓氏的第一个字母(Holt,Modigliani,Muth和Simon),当时他们都在卡内基工学院[2],旨在是寻找更好的决策机制,以帮助工业界更好地应对种种库存、生产和计划问题。这些问题在宏观层面导致经济危机,在微观层面让企业经常处于危机状态,要么是赶工加急,要么是产能利用不足,以及库存积压。

    Holt就是这里要讲的霍尔特,他开发了应对平缓需求的简单指数平滑法、应对趋势的霍尔特双参数线性指数平滑法,以及应对季节性的霍尔特—温特模型,这些都成为工业界最为广泛应用的预测模型[3]。其余的3位研究者中,Modigliani和Simon后来获得了诺贝尔经济学奖,而Muth的理性预期模型呢,又成为卢卡斯获取诺贝尔奖的基石。不得不感叹,这真是个才华横溢的研究团队啊,那时的卡内基梅隆就已经是个才俊辈出的地方。

    简单地说,霍尔特法就是在简单指数平滑系数α的基础上,增加了一个趋势的平滑系数β,所以也叫“双参数平滑法”。当β等于0的时候,霍尔特模型就成了简单指数平滑法。当需求呈现明显的趋势,比如图 1中的情况,简单指数平滑法没法有效应对,表现在对平滑系数择优时,你会发现最优的α变成了1,或者非常接近1——简单指数平滑法没法有效预测时,就只能“步步紧逼”,“球”跑到哪里,就跟到哪里,这注定被动反应,永远滞后一步。霍尔特法增加了趋势参数,更好地预判“球”的走向,系统地增加了拦截到“球”的胜算。

    在霍尔特双参数平滑法模型中,预测由两部分构成;一部分是水平部分,是在上期水平部分的基础上,用简单指数平滑法来更新;另一部分是趋势部分,是在上期趋势部分的基础上平滑调整,也用简单指数平滑法来更新;两者相加,就得到下期的预测[4]。霍尔特法不但持续调整水平部分,而且持续调整趋势部分,在横向和纵向两维调整预测,所以能更好地应对趋势的变化。基本的公式分三部分,更多细节可以百度“霍尔特双参数指数平滑法”。

本期水平部分=α*本期需求实际值 + (1-α)*(上期水平部分+上期趋势部分)(1)

本期趋势部分=β*(本期水平部分-上期水平部分)+(1-β)*上期趋势(2)

下期预测=本期水平部分 + 本期趋势部分(3)

    因为有趋势,霍尔特法可以预测多期的值:未来第n期的预测等于本期水平部分加上n倍的趋势部分。比如在图 1的例子中,第22周的预测=40+1*(-18)=22,第23周的预测=40+2*(-18)=4。你马上会发现,第24周的预测就成了负数,这显然不合理——这是趋势参数带来的问题,导致霍尔特法有过度预测的倾向,在使用的时候要加以留意。

    霍尔特双参数平滑法中,平滑系数α和β介于0和1之间。与简单指数平滑法一样,这两个平滑系数越大,预测模型就越响应,也就是说最新发生的对下一步的预测影响更大,风险是有可能过度反应;平滑系数越小,预测模型就越平稳,也就把最新发生的更多地当成“杂音”给过滤掉,风险是可能没法及时响应需求变动。在霍尔特参数的择优中,我们也可以用Excel中的Solver插件,基于预测准确度最高的目标,围绕两个参数α和β优化,选择最优的参数。与简单指数平滑类似,霍尔特双参数也需要初始化。

    在初始化时,可以假定初始“水平部分”为第一个实际需求值,初始“趋势部分”为第二个实际需求值减去第一个实际需求值;也可以基于前几个实际需求值,利用线性回归模型来计算截距(水平部分)和斜率(趋势部分)。当然还有别的方法来初始化,比如把趋势部分的初始值设为0[5](这是假定刚开始的时候没有趋势),以及用前几期的平均值作为水平部分的初始值。跟前面简单指数平滑法的情况类似,经过一段时间的初始化后,模型会自动纠偏,初始值的影响变得有限,直至微乎其微。

    在图 1的例子中,我们用前9期的数据来初始化,用后12期的数据来测试模型、选择最优的模型。鉴于前几个数据相当离散,我们用前5期的平均值作为水平部分的初始值,趋势部分的初始值设为0,α取值0.8,β取值0.1。对于测试组而言,预测的平均绝对误差为33%,均方差为1790。我也尝试用简单指数平滑来预测,最优化的平滑系数接近1,这两个准确度指标分别为37%和1869。显然,对于这个快消品来说,需求变化剧烈,一经导入就达到顶峰,需求然后就一路下滑,与简单指数平滑法相比,霍尔特法是更有效的预测方法。

    当然,对于指数平滑法,到现在为止,你读了可能没有什么感觉。这没关系,先了解一下,然后动手实践,在实践中加深理解。毕竟,不管理论多完美,除非下到水里,是没法学会游泳的。

【实践者问】我的专业是工业工程,目前感兴趣的工作有两方面,一个是计划,另一个跟供应链稍微偏差些,是数据分析。我由于本身专业跟供应链很相关,而且对于生产计划这样与数据打交道的工作也很感兴趣,但是专业课上学到的无外乎移动平均法、指数平滑法、霍尔特法这些,感觉一个外行人用点心,一天就能熟练掌握几种预测方法,我想知道在计划这个行业进一步是什么样的职业发展道路?

【刘宝红答】这些基本的方法能够解决需求计划的大部分问题,所以不要小看它们。它们看上去简单,其实不简单,不然的话为什么还要把人名冠上去?像霍尔特这种专家,都是跟诺贝尔奖获得者相提并论的人。这些方法凝聚着众多研究者多年的心血,远远没有想象的那么简单——如果我们认为简单,那八成是因为我们不理解。

    比如移动平均法是简单,但是究竟用多少期的需求历史就很不简单,因为这要求我们懂得如何去评估预测模型的好坏。这又涉及到绝对误差、均方差等预测准确度的统计方法——均方差又让我们意识到,预测的一大关键是避免大错特错:小的预测失误容易对付,可以通过安全库存、供应链执行来解决;害死我们的是大错特错。

    那大错特错又是怎么发生的?选择了不合适的预测模型,用了不合适的参数是一个原因,但基础数据也是一大问题源,比如数据没有清洗,我们把以前促销的数据包括在内,后续需求预测自然显著偏高。这是对发生了的促销,那没有发生的呢?这又涉及到跟销售端的对接——需求预测是“从数据开始,由判断结束”,数据代表已经发生的,可重复的;判断代表还没有发生的,不可重复的,这又牵扯到销售跟运营协调流程,企业的几大主干流程之一。

    所以,不要低估这些基本的模型。运用得当,这些模型能解决大部分的问题。不要求新求异。如果有人跟你大谈卡尔曼滤波,或者灰色预测法什么的专业名词,你应该敬而远之——我不是说这些不重要,而是说那更多的是龙肝凤胆;我们得回归计划的基本面,先把我们的大米饭做得更好更合口再说。这就如练武,不管你学什么武术,基本的招数也就那些。要经过一遍又一遍的练习,熟能生巧,出神入化的时候,才能真正掌握。要知道,高手的高,并不在于他们知道的招数比别人多,而是在相同的招数里,他们得到更多。


 
  • 上一篇: 暂无

  • 下一篇: 市场只会奖励对用户好的公司
  • 【打印此文】 【关闭窗口】
    加盟企业 更多
    欧泰克门窗有限公司
    龙卷风科技有限公司
    武汉群胜科技
    博达自动焊接设备
    技缘智能--有限公司
    鑫民生遮阳帘
    奥邦表面技术....
    深圳秋田科技汉办
    维安宁科技有限公司
    一舟电子科技公司
    加盟企业 更多
    思浪实业有限公司
    深圳中基恒润(LED)
    高特装饰
    恋晴集成吊顶
    康王橱柜集成家居
    丽邦地板
    益骏建材有限公司
    欧雅美橱柜
    响美商贸有限公司
    东方超宇装饰公司
    加盟企业 更多
    华斯瓦德有限公司
    唐城商贸有限公司
    科海消防安全工程
    欧亿橱柜
    名鼎集成组合吊顶
    贵州省九阡九公司
    上海百益橱柜
    武汉国冠九鼎装饰
    瑾良喜慕乐整体家居
    世纪明珠酒店
    联系我们网站留言友情链接与我在线管理 ┊ TOP

    鄂公网安备 42010502001151号

    鄂ICP备11009518号
    联系我们:qyzzw888@163.com
    Copyright(c)2005 企业增值网.AllRights Reserved.